$$
\begin{aligned}
& \mathrm{c}:=299792458 \cdot \frac{\mathrm{~m}}{\mathrm{sec}} \\
& \text { ce := } 1.602176462 \cdot 10^{-19} \cdot \text { coul } \\
& \text { me := } 9.10938188 \cdot 10^{-31} \cdot \mathrm{~kg} \\
& \mathrm{mp}:=1.6726231 \cdot 10^{-27} \cdot \mathrm{~kg} \\
& \mathrm{mr}:=\frac{\mathrm{me} \cdot \mathrm{mp}}{\mathrm{me}+\mathrm{mp}} \\
& \alpha:=7.297352533 \cdot 10^{-3} \\
& \mathrm{a}_{\mathrm{o}}:=0.529177249 \cdot 10^{-10} \cdot \mathrm{~m} \\
& \mathrm{eV} \text { := ce•volt } \\
& h:=6.62606876 \cdot 10^{-34} \cdot \text { joule } \cdot \text { sec } \\
& \varepsilon:=8.854187817 \cdot 10^{-12} \cdot \frac{\mathrm{farad}}{\mathrm{~m}} \\
& \AA:=10^{-10} \cdot \mathrm{~m} \\
& \mathrm{fm}:=10^{-15} \cdot \mathrm{~m} \\
& \mathrm{~Hz}:=\sec ^{-1} \\
& \begin{array}{ll}
\mathrm{n} \cdot \lambda=\mathrm{p} \cdot 2 \cdot \pi \cdot \mathrm{r} & \text { Lissajous } \\
\lambda=\frac{\mathrm{h}}{\mathrm{mq} \cdot \beta \cdot \mathrm{v}} & \text { De Broglie }
\end{array} \\
& \beta=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
& \frac{\mathrm{mq} \cdot \beta \cdot \mathrm{v}^{2}}{\mathrm{r}}=\frac{\mathrm{ce}^{2}}{4 \cdot \pi \cdot \varepsilon \cdot \mathrm{r}^{2}} \\
& \mathrm{mr} \cdot \mathrm{c}^{2}-\frac{\mathrm{ce}^{2}}{\mathrm{w} \cdot 4 \cdot \pi \cdot \varepsilon \cdot \mathrm{r}}=\mathrm{mq} \cdot \mathrm{c}^{2} \\
& \text { speed of light } \\
& \text { absolute value of electron charge } \\
& \text { free electron rest mass } \\
& \text { proton rest mass } \\
& \text { reduced electron mass } \\
& \text { fine structure constant } \\
& \text { Bohr radius } \\
& \text { electron volt } \\
& \text { Planck's constant } \\
& \text { Permittivity of vacuum } \\
& \text { Ångström unit } \\
& \text { femtometer } \\
& \text { Hertz } \\
& \mathrm{n} \text { is the number of DeBroglie waves that fit in } \mathrm{p} \text { circle } \\
& \text { circumferences. In short } n \text { is the conventional principle } \\
& \text { quantum number. For obitals above the ground state, } p=1 \text {. } \\
& \text { For those below the ground state, } n \text { is } 1 \text { (?) } \\
& \text { Force balance } \\
& \text { Mass - potential equivalence (Note that mq is the rest mass). } \\
& \text { The assumption is made that the change in potential energy results in an equal } \\
& \text { change in the rest mass of the atom. } \\
& \mathrm{w} \text { is included here as a weighting factor. When } \mathrm{w}=1 \text {, the assumption is that only } \\
& \text { electron mass is lost with the change in field strength. When } w=2 \text {, the } \\
& \text { assumption is that the mass lost comes equally from proton and electron. } \\
& \text { Other weighting factors allow for the assumption that a larger proportion of the } \\
& \text { mass loss comes from the proton. } \\
& \text { For the remainder of this document, I have chosen } w=2 \text {, as it seems reasonable } \\
& \text { to me that the mass loss comes equally from each particle, given that each } \\
& \text { negates an equivalent amount of the others potential field, and this whole } \\
& \text { document is based upon the assumption that electric field potential and rest } \\
& \text { mass are equivalent. } \\
& 2 \cdot \mathrm{p} \cdot \pi \cdot \frac{\mathrm{r}}{\mathrm{n}}=\frac{\mathrm{h}}{(\mathrm{mq} \cdot(\beta \cdot \mathrm{v}))} \\
& \text { Lissajous + De Broglie } \\
& \frac{\mathrm{mq}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \cdot \frac{\mathrm{v}^{2}}{\mathrm{r}}=\frac{1}{4} \cdot \frac{\mathrm{ce}^{2}}{\left[\pi \cdot\left(\varepsilon \cdot r^{2}\right)\right]} \\
& R+F B
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}(\mathrm{n}, \mathrm{p}):=\frac{\mathrm{p} \cdot \mathrm{ce}^{2}}{2 \cdot \mathrm{n} \cdot \mathrm{~h} \cdot \varepsilon} \quad \beta(\mathrm{n}, \mathrm{p}):=\frac{2}{\sqrt{4-\frac{\left(\mathrm{ce}^{4} \cdot \mathrm{p}^{2}\right)}{\left(\mathrm{n}^{2} \cdot \mathrm{~h}^{2} \cdot \varepsilon^{2} \cdot c^{2}\right)}}} \\
& \mathrm{r}(\mathrm{w}, \mathrm{n}, \mathrm{p}):=\frac{\left[2 \cdot \mathrm{n}^{2} \cdot \mathrm{~h}^{2} \cdot \varepsilon^{2} \cdot \mathrm{w} \cdot \mathrm{c}^{2} \cdot \sqrt{4-\mathrm{p}^{2} \cdot \frac{\mathrm{ce}^{4}}{\left(\mathrm{n}^{2} \cdot \mathrm{~h}^{2} \cdot \varepsilon^{2} \cdot \mathrm{c}^{2}\right)}}+\mathrm{p}^{2} \cdot \mathrm{ce}^{4}\right]}{\left(4 \cdot \mathrm{p}^{2} \cdot \mathrm{ce}^{2} \cdot \mathrm{mr} \cdot \mathrm{c}^{2} \cdot \mathrm{w} \cdot \pi \cdot \varepsilon\right)} \\
& \operatorname{mq}(\mathrm{w}, \mathrm{n}, \mathrm{p}):=\left[\mathrm{mr}-\frac{\mathrm{ce}^{4} \cdot \mathrm{p}^{2} \cdot \mathrm{mr}}{2 \cdot \mathrm{n}^{2} \cdot \mathrm{~h}^{2} \cdot \varepsilon^{2} \cdot \mathrm{w} \cdot \mathrm{c}^{2} \cdot \sqrt{4-\mathrm{p}^{2} \cdot \frac{\mathrm{ce}^{4}}{\left(\mathrm{n}^{2} \cdot \mathrm{~h}^{2} \cdot \varepsilon^{2} \cdot c^{2}\right)}}+\mathrm{p}^{2} \cdot \mathrm{ce}^{4}}\right] \\
& E_{r l s}(w, n, p):=\frac{c e^{2}}{4 \cdot \pi \cdot \varepsilon \cdot r(w, n, p)}-(m q(w, n, p) \cdot(\beta(n, p)-1)) \cdot c^{2} \\
& \text { p:= 1, 2 .. } 140
\end{aligned}
$$

Note that at the maximum attainable p value (about 120), the radius has dropped to well below 4 fm . Muonic fusion occurs at a distance of about 250 fm , which equates to a p value of 14-15. Consequently it would seem it ought to be reasonably easy to facilitate fusion through shrunken hydrogen.

Example:-

p := 1,2.. 10
$E p_{p}:=E_{r l s}(2,1, p)$

$E p=$| | 0 |
| :--- | :--- |
| 0 | 0 |
| 1 | 13.598 |
| 2 | 54.39 |
| 3 | 122.37 |
| 4 | 217.526 |
| 5 | 339.844 |
| 6 | 489.304 |
| 7 | 665.881 |
| 8 | 869.549 |
| 9 | $1.1 \cdot 10^{3}$ |
| 10 | $1.358 \cdot 10^{3}$ |

Electron Angular Momentum/ (h/2 Pi)

