$2 \cdot \mathbf{p} \cdot \boldsymbol{\pi} \cdot \frac{\mathbf{r}}{\mathbf{n}} = \frac{\mathbf{h}}{(\mathbf{mq} \cdot (\boldsymbol{\beta} \cdot \mathbf{v}))}$ $\frac{\mathrm{mq}}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}} \cdot \frac{\mathrm{v}^{2}}{\mathrm{r}} = \frac{1}{4} \cdot \frac{\mathrm{ce}^{2}}{\left[\pi \cdot \left(\varepsilon \cdot \mathrm{r}^{2}\right)\right]} \qquad \mathsf{R} + \mathsf{FB}$

$$p := 1, 2... 140$$

Note that at the maximum attainable p value (about 120), the radius has dropped to well below 4 fm. Muonic fusion occurs at a distance of about 250 fm, which equates to a p value of 14-15. Consequently it would seem it ought to be reasonably easy to facilitate fusion through shrunken hydrogen.

Example:-

p := 1,2..10

 $\operatorname{Ep}_{p} \coloneqq \operatorname{E}_{rls}(2,1,p)$

		0	
Ep =	0	0	۰eV
	1	13.598	
	2	54.39	
	3	122.37	
	4	217.526	
	5	339.844	
	6	489.304	
	7	665.881	
	8	869.549	
	9	1.1•10 ³	
	10	1.358•10 ³	

